магнитный двигатель

Магнитный двигатель содержит установленные жестко и последовательно по крайней мере в два ряда на двух относительно друг друга подвижных элементах 1 и 2 постоянные магниты 3 и 4. Большие постоянные магниты 3 с вертикальной намагниченностью первого элемента 1 обращены своими одноименными полюсами в сторону постоянных магнитов 4 с горизонтальной намагниченностью второго элемента 2. Разноименные полюса каждого постоянного магнита 4 с горизонтальной намагниченностью второго элемента 2 расположены в один ряд параллельно ряду одноименных полюсов обращенных к ним больших постоянных магнитов 3 с вертикальной намагниченностью первого элемента 1. Связь магнитных полей постоянных магнитов 3 и 4 обоих элементов 1 и 2 выполнена через воздушный зазор с возможностью деформации магнитных полей и поворота на определенный угол нейтральных сечений постоянных магнитов 3 и 4. В двигатель введены малые постоянные магниты 6 с вертикальной намагниченностью. Они установлены на первом элементе 1 между большими постоянными магнитами 3 с равномерным их чередованием, с воздушными зазорами между ними и с возможностью их перемещения в пределах высоты больших постоянных магнитов 3. Это позволяет повысить коэффициент полезного действия магнитного двигателя. 10 з.п. ф-лы, 8 ил.

Рисунки к патенту РФ 2117379

Изобретение относится к базовым элементам машиностроения и может быть использовано в качестве привода машин и механизмов с широким диапазоном мощности, для экологически чистых движетелей, электрогенераторов, транспортеров, совокупности транспортных средств, в качестве исполнительного элемента в устройствах автоматики.

Известен магнитный двигатель, содержащий бескатушечные постоянно намагниченные части для создания момента вращения, экран определенной толщины из материала, сильно уменьшающего действия сил магнитного поля, с выемкой и расположенный с асимметричным смещением относительно магнитных частей таким образом, что при своем движении он находится в основном на большом расстоянии от полюсов этих частей и экранирует их только в области определенного угла поворота, а также привод для вращения экрана [1].

Недостатком известного магнитного двигателя является сложность его конструкции и необходимость в приводе для вращения экрана.

Известен магнитный двигатель, содержащий статор с постоянным магнитом и ротор с двумя постоянными магнитами, поверхность которых охвачена одним полюсом постоянного магнита статора, при этом ротор постоянно вращается [2].

Недостатком известного магнитного двигателя является сложность управления им и невозможность получения на выходном валу большого крутящего момента.

Известен магнитный двигатель, содержащий установленные жестко и последовательно, как минимум в два ряда, на двух относительно друг друга подвижных немагнитных элементах постоянные магниты и магнитные экраны при этом большие постоянные магниты с вертикальной намагниченностью первого элемента обращены своими одноименными полюсами в сторону постоянных с горизонтальной намагниченностью магнитов второго элемента, разноименные полюса каждого постоянного магнита с горизонтальной намагниченностью упомянутого второго элемента расположены в один ряд параллельно ряду одноименных полюсов обращенных к ним больших постоянных магнитов с вертикальной намагниченностью первого элемента, магнитные экраны расположены м между магнитами обоих элементов параллельно ряду одноименных полюсов магнитов с вертикальной намагниченностью первого элемента, а связь магнитных полей постоянных магнитов обоих элементов выполнена через воздушный зазор с возможностью деформации магнитных полей и поворота на определенный угол нейтральных сечений постоянных магнитов [3].

Недостатком наиболее близкого к изобретению магнитного двигателя является наличие магнитных экранов, что не позволяет получить необходимый большой крутящий момент на выходном валу двигателя с вращением ротора или необходимое большое усилие прямолинейного перемещения подвижного элемента.

Задачей изобретения является увеличение мощности магнитного двигателя и получение большого крутящего момента на выходном валу магнитного двигателя с вращением ротора, а также повышение коэффициента полезного действия магнитного двигателя.

Сущность изобретения заключается в том, что в магнитный двигатель, содержащий установленные жестко и последовательно по крайней мере в два ряда на двух относительно друг друга подвижных немагнитных элементах постоянные магниты, при этом большие постоянные магниты с вертикальной намагниченностью первого элемента обращены своими одноименными полюсами в сторону постоянных магнитов с горизонтальной намагниченностью второго элемента, разноименные полюса каждого постоянного магнита с горизонтальной намагниченностью упомянутого второго элемента расположены в один ряд параллельно ряду одноименных полюсов обращенных к ним больших постоянных магнитов с вертикальной намагниченностью первого элемента, а связь магнитных полей постоянных магнитов обоих элементов выполнена через воздушный зазор с возможностью деформации магнитных полей и поворота на определенный угол нейтральных сечений постоянных магнитов, введены малые постоянные магниты с вертикальной намагниченностью, по направлению одинаковой с намагниченностью больших постоянных магнитов, причем они установлены на первом элементе между большими постоянными магнитами с равномерным их чередованием через один, с воздушными зазорами между ними и с возможностью их перемещения в пределах высоты больших постоянных магнитов.

Соотношение массы малого постоянного магнита с вертикальной намагниченностью к массе большого постоянного магнита с вертикальной намагниченностью равно 1 : 1,5 — 5,0.

Соотношение высоты малого постоянного магнита с вертикальной намагниченностью к массе большого постоянного магнита с вертикальной намагниченностью равно 1 : 2 — 4.

Связь магнитных полей постоянных магнитов обоих элементов выполнена через воздушный зазор, величина которого составляет 0,5 — 5,0 мм.

Количество больших и малых постоянных магнитов с вертикальной намагниченностью может быть равным между собой.

Двигатель может отличаться тем, что в него может быть введен второй дополнительный ряд постоянных магнитов с горизонтальной намагниченностью, который установлен жестко на втором элементе, с противоположной стороны больших постоянных магнитов с вертикальной намагниченностью первого элемента, с воздушным зазором между ними и со смещением по горизонтали относительно постоянных магнитов с горизонтальной намагниченностью первого ряда второго элемента на один шаг.

Количество больших или малых постоянных магнитов с вертикальной намагниченностью и количество постоянных магнитов с горизонтальной намагниченностью может быть равным между собой.

В двигателе первый и второй элементы могут быть выполнены в виде двух дисков, один из которых жестко соединен с неподвижным корпусом, а другой жестко соединен с выходным валом.

В двигателе первый и второй элементы могут быть выполнены в виде нескольких дисков, и двигатель содержит при этом по крайней мере один диск первого элемента, соединенный жестко с неподвижным корпусом, и два диска второго элемента, которые смещены относительно друг друга и их постоянных магнитов с горизонтальной намагниченностью на угол 5 — 90 o и жестко соединены с выходным валом.

При этом большие и малые постоянные магниты с вертикальной намагниченностью, а также постоянные магниты с горизонтальной намагниченностью могут быть выполнены секторными.

Каждый секторный малый постоянный магнит с вертикальной намагниченностью может быть жестко соединен с серединой цилиндрической пружины, ось которой параллельна оси выходного вала, а на дисках второго элемента установлены кулачки, которые имеют возможность контакта с концами цилиндрических пружин.

Такое конструктивное выполнение магнитного двигателя согласно изобретения позволяет увеличить его мощность и получить сравнительно с прототипом больший крутящий момент на выходном валу магнитного двигателя с вращением ротора, а также повысить коэффициент полезного действия магнитного двигателя.

На фиг. 1 изображена функциональная схема магнитного двигателя; на фиг. 2 и 3 — первый пример конструкции магнитного двигателя, вид сбоку в сечении и сечение А-А; на фиг. 4, 5 и 6 — второй пример конструкции магнитного двигателя, вид сбоку в сечении, сечение А-А, и сечение Б-Б; на фиг.7 и 8 — то же, сечение В-В и Г-Г.

Магнитный двигатель содержит установленные жестко и последовательно по крайней мере в два ряда на двух относительно друг друга подвижных немагнитных элементах 1 и 2 постоянные магниты 3 и 4, при этом большие постоянные магниты 3 с вертикальной намагниченностью первого элемента 1 обращены своими одноименными полюсами в сторону постоянных магнитов 4 с горизонтальной намагниченностью второго элемента 2, разноименные полюса каждого постоянного магнита 4 с горизонтальной намагниченностью упомянутого второго элемента 2 расположены в один ряд, параллельно ряду одноименных полюсов обращенных к ним больших постоянных магнитов 3 с вертикальной намагниченностью первого элемента 1, а связь магнитных полей постоянных магнитов 3 и 4 обоих элементов 1 и 2 выполнена через воздушный зазор 5 с возможностью деформации магнитных полей и поворота на определенный угол нейтральных сечений постоянных магнитов 3 и 4. В двигатель введены малые постоянные магниты 6 с вертикальной намагниченностью, по направлению одинаковой с намагниченностью больших постоянных магнитов 3, причем они установлены на первом элементе 1 между большими постоянными магнитами 3 с равномерным их чередованием через один, с воздушными зазорами 7 и 8 между ними и с возможностью их перемещения в пределах высоты больших постоянных магнитов.

Соотношение массы малого постоянного магнита 6 с вертикальной намагниченностью к массе большого постоянного магнита 3 с вертикальной намагниченностью равно 1 : 1,5 — 5,0.

Соотношение высоты малого постоянного магнита 6 с вертикальной намагниченностью к массе большого постоянного магнита 3 с вертикальной намагниченностью равно 1 : 2 — 4.

Связь магнитных полей постоянных магнитов 3, 4 и 6 обоих элементов 1 и 2 выполнена через воздушный зазор 5, величина которого составляет 0,5 — 5,0 мм.

В двигатель введен второй ряд 9 постоянных магнитов 10 с горизонтальной намагниченностью, который установлен жестко на втором элементе 2, с противоположной стороны больших постоянных магнитов 3 с вертикальной намагниченностью первого элемента 1, с воздушным зазором 11 между ними со смещением по горизонтали относительно постоянных магнитов 4 с горизонтальной намагниченностью первого ряда второго элемента 2 на один шаг 12.

Количество больших и малых постоянных магнитов 3 и 6 с вертикальной намагниченностью второго элемента 2 равно между собой и равно количеству постоянных магнитов 4 и 10 с горизонтальной намагниченностью.

В двигателе первый и второй элементы 1 и 2 могут быть выполнены в виде двух дисков (не показаны), один из которых жестко соединен с неподвижным корпусом, а другой жестко соединен с выходным валом.

На фиг. 2 — 6 показаны примеры конструкции предлагаемого магнитного двигателя, у которого первый и второй элементы 1 и 2 выполнены в виде нескольких дисков, и двигатель содержит по крайней мере один диск 18 первого элемента 1, соединенный жестко с неподвижным корпусом 14, и два диска 15 и 16 второго элемента 2, которые смещены относительно друг друга и их постоянных магнитов 4 и 10 с горизонтальной намагниченностью на угол 5 — 90 o и жестко соединены с выходным валом 17.

Большие и малые постоянные магниты 3 и 6 с вертикальной намагниченностью, а также постоянные магниты 4 и 10 с горизонтальной намагниченностью выполнены секторными (на плане в виде секторов).

Каждый секторный малый постоянный магнит 6 с вертикальной намагниченностью жестко соединен с серединой 18 цилиндрической пружины 19, ось 20 которой параллельна оси выходного вала 17, а на дисках 15 и 16 второго элемента 2 установлены кулачки 21, которые имеют возможность контакта с концами цилиндрических пружин 19.

Магнитный двигатель работает следующим образом.

В исходном положении малые постоянные магниты 6 с вертикальной намагниченностью находятся на середине высоты больших постоянных магнитов 3 с вертикальной намагниченностью в заторможенном состоянии. При их освобождении они занимают соответственно крайние положения по высоте под действием магнитных сил отталкивания взаимодействующих магнитных полей и в результате этого поворота на определенный угол нейтральных сечений всех постоянных магнитов 3, 4, 6 и 10 создается крутящий момент на выходном валу 17. При одновременном повороте постоянных магнитов 4 и 10 на один шаг, равный углу смещения 5 — 90 o , под действием цилиндрических пружин 19 и кулачков 21 малые постоянные магниты 6 перемещаются и занимают противоположные предыдущим положения. Это повторяется через каждый шаг при вращении выходного вала 17 и дисков 15 и 16. При этом малые постоянные магниты 6 совершают возвратно-поступательные движения в пределах высоты больших постоянных магнитов 3. Для гашения их кинетической энергии при смене направления от сил выталкивания служат цилиндрические пружины 19.

Для остановки магнитного двигателя необходимо затормозить малые постоянные магниты 6 на середине высоты больших постоянных магнитов 3, т.е. в неустойчивом нейтральном положении. Это осуществляется специальным устройством, которое на фиг. 1 — 8 не показано.

Магнитный двигатель согласно изобретения позволяет увеличить мощность и получить большой крутящий момент на выходном валу по сравнению с прототипом за счет более полного использования потенциальной энергии магнитных полей, а также повысить коэффициент полезного действия магнитного двигателя за счет исключения магнитных экранов.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Магнитный двигатель, содержащий установленные жестко и последовательно по крайней мере в два ряда на двух относительно друг друга подвижных немагнитных элементах постоянные магниты, при этом большие постоянные магниты с вертикальной намагниченностью первого элемента обращены своими одноименным полюсами в сторону постоянных магнитов с горизонтальной намагниченностью второго элемента, разноименные полюса каждого постоянного магнита с горизонтальной намагниченностью упомянутого второго элемента расположены в один ряд параллельно ряду одноименных полюсов обращенных к ним больших постоянных магнитов с вертикальной намагниченностью первого элемента, а связь магнитных полей постоянных магнитов обоих элементов выполнена через воздушный зазор с возможностью деформации магнитных полей и поворота на определенный угол нейтральных сечений постоянных магнитов, отличающийся тем, что в него введены малые постоянные магниты с вертикальной намагниченностью, по направлению одинаковой с намагниченностью больших постоянных магнитов, причем они установлены на первом элементе между большими постоянными магнитами с равномерным их чередованием через один, с воздушными зазорами между ними и с возможностью их перемещения в пределах высоты больших постоянных магнитов.

Другие публикации:  Могут ли приставы арестовать банковскую ячейку

2. Двигатель по п.1, отличающийся тем, что соотношение массы малого постоянного магнита с вертикальной намагниченностью к массе большого постоянного магнита с вертикальной намагниченностью равно 1 : 1,5 — 5,0.

3. Двигатель по п. 1, отличающийся тем, что соотношение высоты малого постоянного магнита с вертикальной намагниченностью к высоте большого постоянного магнита с вертикальной намагниченностью равно 1 : 2 — 5.

4. Двигатель по п.1, отличающийся тем, что связь магнитных полей постоянных магнитов обоих элементов выполнена через воздушный зазор, величина которого составляет 0,5 — 5,0 мм.

5. Двигатель по п.1, отличающийся тем, что количество больших и малых магнитов с вертикальной намагниченностью второго элемента равно между собой.

6. Двигатель по п. 1, отличающийся тем, что в него введены второй ряд постоянных магнитов с горизонтальной намагниченностью, который установлен жестко на втором элементе, с противоположной стороны больших постоянных магнитов с вертикальной намагниченностью первого элемента, с воздушным зазором между ними и со смещением по горизонтали относительно постоянных магнитов с горизонтальной намагниченностью первого ряда второго элемента на один шаг.

7. Двигатель по п.1, отличающийся тем, что количество больших или малых постоянных магнитов с вертикальной намагниченностью и количество постоянных магнитов с горизонтальной намагниченностью равно между собой.

8. Двигатель по п.1, отличающийся тем, что первый и второй элементы выполнены в виде двух дисков, один из которых жестко соединен с неподвижным корпусом, а другой жестко соединен с выходным валом.

9. Двигатель по п.1, отличающийся тем, что первый и второй элементы выполнены в виде нескольких дисков и двигатель содержит по крайней мере один диск первого элемента, соединенный жестко с неподвижным корпусом, и два диска второго элемента, которые смещены относительно друг друга и их постоянных магнитов с горизонтальной намагниченностью на угол 5 — 90 o и жестко соединены с выходным валом.

10. Двигатель по п.8 или 9, отличающийся тем, что большие и малые постоянные магниты с вертикальной намагниченностью, а также постоянные магниты с горизонтальной намагниченностью выполнены секторными.

11. Двигатель по п.10, отличающийся тем, что каждый секторный малый постоянный магнит с вертикальной намагниченностью жестко соединен с серединой цилиндрической пружины, ось которой параллельна оси выходного вала, а на дисках второго элемента установлены кулачки, которые имеют возможность контакта с концами цилиндрических пружин.

магнитный двигатель

Изобретение относится к области электротехники и может найти применение в различных областях промышленности и в быту. Технический результат — уменьшение энергетических потерь. Предлагаемый магнитный двигатель содержит корпус, неподвижный и подвижный магнитные блоки, выполненные в виде колец. Магниты в блоках размещены с интервалами и чередованием расположения их полюсов. Магнитный двигатель содержит привод, соединенный с подвижным магнитным блоком, а также механизм отбора мощности, включающий вал отбора мощности, установленный в корпусе, и ферромагнитные элементы. При этом ферромагнитные элементы механизма отбора мощности выполнены с возможностью силового взаимодействия с магнитами подвижного и неподвижного блоков и с валом отбора мощности. 4 з.п. ф-лы, 2 ил.

Рисунки к патенту РФ 2145764

Изобретение относится к области энергетического машиностроения, в частности двигателестроения, и может найти применение в различных областях промышленности и в быту.

Известен двигатель, содержащий магнитные блоки статора и ротор с валом отбора мощности (см. Ю.М.Борисов и др. Электротехника. Москва Энергоиздат 1985 г. с. 457), в котором в магнитных полях магнитов размещены обмотки ротора, жестко связанные с валом. При пропускании по обмоткам электрического тока вырабатывается вращающийся момент, приводящий во вращение ротор с валом.

Для этих двигателей характерны затраты энергии на преодоление трения, на нагрев окружающей среды и преодоление противодействия от самоиндукции. Третья составляющая затрат является наибольшей и это в данном случае рассматривается как недостаток, характерный для данного типа двигателей.

Известен магнитный двигатель, который содержит корпус, неподвижный (НМБ) и подвижный (ПМБ) магнитные блоки, в которых магниты размещены с интервалами и чередованием расположения полюсов, а также привод, соединенный с ПМБ, и механизм отбора мощности (МОМ) (см., например, А.С. СССР N 304811).

Данное техническое решение принято здесь за прототип.

В этом техническом решении магнитные блоки имеют линейную форму конструкции с возможностью возвратно-поступательного характера движения ПМБ. МОМ включает в себя магниты и металлические изделия, которые должны быть притянуты с помощью магнитного поля. НМБ и ПМБ в зависимости от того, совпадают намагниченности (полярности) их магнитов или не совпадают, то соответственно удваивается общий магнитный поток (и тогда изделия притягиваются) или обнуляется путем замыкания его на самого себя (и тогда изделия освобождаются от магнитного блока), при этом магнитный поток при движении ПМБ изменяется от нуля до удвоенного значения.

Важным достоинством прототипа является то, что двигатель в принципе может работать без потребления электроэнергии и, следовательно, он свободен от отмеченного выше недостатка, характерного для прототипа (электродвигателя). Основной недостаток прототипа заключается в ограниченности его возможностей при функционировании — он может работать только в режиме притягивания и освобождения металлоизделий при их транспортировке.

В изобретении ставится задача расширить функциональные возможности магнитного двигателя. Эта задача решается путем усовершенствования конструктивной схемы двигателя.

Сущность данного изобретения заключается в том, что магнитные блоки выполнены в форме колец, а механизм отбора мощности включает в себя вал отбора мощности, установленный в корпусе, и ферромагнитные элементы, выполненные с возможностью силового взаимодействия с магнитами и валом отбора мощности.

Дополнительный вариант исполнения двигателя включает два НМБ — наружный и внутренний относительно ПМБ, размещенные концентрически с ним и с валом отбора мощности, при этом противолежащие магниты каждого НМБ имеют разные полярности, а ферромагнитные элементы МОМа размещены снаружи от наружного НМБ и внутри внутреннего НМБ, причем наружные и внутренние ферромагнитные элементы скреплены боковыми щечками из немагнитного материала.

Помимо этого, ПМБ содержит кольцо из немагнитного материала, а на нем снаружи и внутри попарно размещены магниты, число n которых с каждой стороны определено по формуле n = NK + 1, где N и K — соответственно количество МОМ и число магнитов, взаимодействующих с одним МОМ.

Кроме того, корпус имеет радиальные выточки, в которых размещены щечки МОМа с возможностью совершения в них возвратно-поступательных движений.

Магниты НМБ и ПМБ имеют одинаковые объемы, причем магниты НМБ, взаимодействующие с МОМами, и сами МОМы размещены под углом 120 градусов.

Для пояснения сущности изобретения к описанию прилагаются чертежи.

На фиг. 1 изображена конструктивная схема магнитного двигателя с видом на торцы магнитных блоков и вала отбора мощности.

На фиг. 2 та же конструктивная схема представлена с видом — по диаметральному сечению.

Основные характерные особенности предлагаемого магнитного двигателя заключаются в том, что он, во-первых, как и прототип, мало потребляет энергии, которая в основном необходима лишь для преодоления сил трения, и во-вторых, он может быть применен, как и аналог (электродвигатель), для выполнения широкого спектра функций, то есть обладает достоинствами аналога и прототипа. Возможность получения на валу отбора мощности энергии, большей затрачиваемой на входе, объясняется тем, что при этом используется энергия постоянных магнитов. Обычно считается, что энергия постоянных магнитов невелика. Да это действительно так, поскольку даже при использовании сильных магнитов их сила проявляется на довольно малых расстояниях. Тем не менее, благодаря использованию принципа интегрирования (суммирования) большого количества малоэнергосодержащих составляющих (благодаря возвратно-поступательному характеру перемещений МОМа) достигается эффект получения повышенной энергетики.

Предлагаемый магнитный двигатель содержит корпус 1, НМБ2 и ПМБ3, выполненные в виде концентрических колец. В этих блоках магниты размещены с интервалами, равновеликими размеру магнита. Магниты в блоке размещены так, что их полюса N (северный) и S (южный) чередуются от магнита к магниту. С ПМБ соединен привод 4. В состав магнитного двигателя входят также МОМ, который включает в себя вал 5 отбора мощности, который установлен в корпусе 1 и ферромагнитные элементы — наружные 6 и внутренние 7. Элементы 6 и 7 скреплены между собой боковыми щечками 8 из немагнитного материала. Ферромагнитные элементы 6 и 7 выполнены с возможностью силового взаимодействия с магнитами и валом отбора мощности. В корпусе 1 двигателя размещены два НМБ — наружный 2 и внутренний 9 относительно ПМБ 3. Наружный НМБ 2 имеет три выточки, расположенные по кольцу под углом 120 градусов, в них частично утоплены три электромагнитных привода 4 ПМБ. НМБ 2 и 9 через магнитопроводные участки 10 закреплены к корпусу 1 (фиг. 2). Магниты НМБ и ПМБ имеют одинаковые объемы. На фиг. 1 ПМБ также, как и НМБ, разбит на две части — наружную и внутреннюю. Магниты обеих частей ПМБ крепятся к немагнитному кольцу 11, которое благодаря шарикоподшипникам (на фиг. не показаны) вместе с ПМБ имеет возможность свободного вращения относительно НМБ.

Число магнитов n ПМБ определено в соответствии с формулой
n = NK + 1,
где N — количество МОМ, K — количество магнитов НМБ, взаимодействующих с одним МОМ. МОМ включает в себя ферромагнитные элементы 6 и 7, которые соединены между собой немагнитными щечками 8, собачки 12 и 13 и вал отбора мощности 5, установленный в шарикоподшипниках 15 и 16 в корпусе 1. Корпус 1 имеет радиальные выточки, в которых размещены немагнитные боковые щечки 8, благодаря чему ферромагнитные элементы имеют возможность вместе с собачками 12 и 13 совершать в них возвратно-поступательные движения. Количество МОМ равно или кратно трем. На фиг. 1 их три, все они задействованы на один общий храповик 14 и вал отбора мощности 5.

Привод 4 включает в себя обоймы 17 и обмотки 18, при этом обоймы 17 имеют возможность периодического замыкания магнитных полей магнитов ПМБ. Количество приводов равно или кратно трем. На фиг. 1 их три и размещены они под углом 120 градусов относительно друг друга. Обмотки 18 благодаря углублению в наружном НМБ (поскольку вне сектора МОМа магниты не установлены) компактно вписываются в конструкцию двигателя, они включают в себя сигнальные витки и витки с управляемым током.

Принцип действия магнитного двигателя заключается в следующем.

Для того чтобы магнитный двигатель зафункционировал, на силовые витки одной из обмоток 18 подают импульс тока. Электрический ток вырабатывает магнитный поток, который через магнитопроводные участки 19 и 20 замыкается на магнит и обойму 17, взаимодействуя с магнитом ПМБ, вырабатывает вращающий момент и поворачивает на определенный угол ПМБ. Далее сигнальные витки второй обмотки, когда к ней подойдет передний край магнита, вырабатывает импульс электрического тока, который после преобразования будет подан на силовые витки этой же второй обмотки. Аналогично действует и третья обмотка. Таким образом, процесс поворота ПМБ приобретает непрерывный характер.

В процессе вращения ПМБ магниты НМБ и ПМБ занимают положения, при которых их сближаемые полюса могут быть как одинаковой, так и разной полярности. К примеру, для нижнего механизма отбора мощности (фиг. 1) полярность магнитов наружных НМБ и ПМБ разная. В этом случае магнитные потоки взаимодействующих магнитов замыкаются сами на себя, а с наружным ферромагнитным элементом 6 они не взаимодействуют (их притяжение отсутствует). Для магнитов внутренних НМБ и ПМБ картина обратная — полярность взаимодействующих магнитов одинаковая. Оба поля складываются, в результате чего они через магнитопроводы 10 замыкаются на внутренний ферромагнитный элемент 7 и притягивают его вплотную к магниту внутреннего НМБ и внутренней поверхности магнитопроводов 10. Собачка 12, закрепленная на нижнем ферромагнитном элементе, находящаяся в зацеплении с храповиком 14, повернет его на один зуб, при этом вторая собачка 13 после скольжения по своему зубу храповика войдет в зацепление со смежным зубом, с тем чтобы при смене полярности магнитов повернуть храповик на следующий угол.

Другие публикации:  Трудовой договор бюджетного учреждения образец

Процесс поворота вала отбора мощности двумя другими механизмами отбора мощности аналогичен, но во времени действие каждого из них смещено на 120 градусов, вследствие чего он приобретает непрерывный, достаточно плавный характер, несмотря на то, что для каждого в отдельности механизма отбора мощности этот процесс носит импульсный характер.

В процессе вращения ПМБ при сближении однополярных магнитов возникают силы (моменты) торможения, а при сближении разнополярных магнитов — ускорение. При удалении означенных магнитов силовые взаимодействия аналогичны, но противоположны по знаку. В конструкции двигателя предусмотрено такое расположение магнитов, при котором, если в наружных НМБ и ПМБ сближающиеся магниты однополярные и они при этом отталкиваются и тормозят движение, то во внутренних НМБ и ПМБ сближающиеся магниты разнополярные (которые при этом притягиваются и ускоряют движение). Поскольку объемы магнитов одинаковые, то и силы, тормозящие и ускоряющие — одинаковые, вследствие чего эти силы компенсируют друг друга. При этом на вращение ПМБ требуется энергия лишь на преодоление трения независимо от выдаваемой выходной мощности, лишь бы соответствующей мощностью располагали постоянные магниты.

В прототипе указанные силовые взаимодействия не компенсируются и их при перемещении ПМБ приходится преодолевать.

Функционирование привода 4 ПМБ обеспечивается тем, что сигнальные витки одной из обмоток в виде импульсов электрического тока фиксируют подход передней кромки магнита, а после необходимых преобразований этот импульс соответствующей величины и фазы подается в силовые витки той же обмотки. Магнитное поле силовых витков катушки взаимодействует с полем магнита, образуя крутящий момент. Задний фронт импульса, синхронизированный с задней кромкой магнита, отключает ток. Благодаря тому, что предусмотрены три обмотки, расположенные под углом 120 градусов, процесс поворота ПМБ происходит непрерывно с возможностью управления величиной тока, а следовательно, с возможностью управления скоростью вращения вала отбора мощности. Поскольку величина хода собачек согласована с углом поворота газа, то скорость его вращения равна скорости вращения ПМБ.

По своим функциональным возможностям предлагаемый магнитный двигатель по сути дела не отличается от возможностей электродвигателя, а следовательно, эти возможности можно считать расширенными по сравнению с прототипом.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Магнитный двигатель, содержащий корпус, неподвижный и подвижный магнитные блоки, в которых магниты размещены с интервалами и чередованием расположения полюсов, а также привод, соединенный с подвижным магнитным блоком, и механизм отбора мощности, отличающийся тем, что магнитные блоки выполнены в форме колец, а механизм отбора мощности включает в себя вал отбора мощности, установленный в корпусе, и ферромагнитные элементы, выполненные с возможностью силового взаимодействия с магнитами подвижного и неподвижного блоков и с валом отбора мощности.

2. Магнитный двигатель по п.1, отличающийся тем, что он содержит два неподвижных магнитных блока — наружный и внутренний относительно подвижного магнитного блока, размещенные концентрически с ним и с валом отбора мощности, причем противолежащие магниты каждого неподвижного магнитного блока имеют разные полярности, а ферромагнитные элементы механизма отбора мощности размещены снаружи от наружного неподвижного магнитного блока, при этом наружные и внутренние ферромагнитные элементы скреплены боковыми щечками из немагнитного материала.

3. Магнитный двигатель по любому из пп.1 и 2, отличающийся тем, что подвижный магнитный блок содержит кольцо из немагнитного материала, а на нем снаружи и внутри попарно размещены магниты, число n которых равно n = N K + 1, где N и K — соответственно, количество механизмов отбора мощности и число магнитов, взаимодействующих с одним механизмом отбора мощности.

4. Магнитный двигатель по любому из пп.1 — 3, отличающийся тем, что корпус имеет радиальные выточки, в которых размещены боковые щечки механизма отбора мощности с возможностью совершения в них возвратно-поступательных движений.

5. Магнитный двигатель по любому из пп.1 — 4, отличающийся тем, что магниты неподвижного и подвижного магнитных блоков имеют одинаковые объемы, причем магниты неподвижных магнитных блоков, взаимодействующие с механизмом отбора мощности, размещены под углом 120 o .

Магнитный мотор «Магнитная заслонка» патент

Патент на этот магнитный двигатель принадлежит Калинину Анатолию Анатольевичу.

Вот чертежи данного двигателя.

На анимированном изображении виден принцип работы магнитной заслонки.

Патент на магнитный двигатель.

У автора есть свой небольшой сайт о его изобретении kalininaa.narod.ru

И конечно же видео собранного магнитного двигателя.

нужно избавиться от рычага шторки и пружины увеличить диаметр маховика ина него одеть кольцо с вырезом для открытия-закрывания магнитного потока по принципу золотника

Судя по видео это не магнитный двигатель а ручной .

Что это интересно за шторка такая!?если уж каким то чудом такой двигатель и будет работать то крутящий момент будет низкий.

ну и как, удалось изобретение внедрить?
мне кажется что на шторку будет действовать сила от нижнего магнита в горизонтальном направлении, которая приблизительно будет равна силе, которая компенсирует магниты в вертикальном направлениии

Сколько идиотам ни повторяй, что магнитное поле нельзя экранировать, не поможет.

магнитный двигатель

Изобретение относится к физике и может быть применено для получения вращательного движения с использованием энергии магнитного поля постоянных магнитов. Технический результат состоит в получении вращательного движения в скрещенных магнитных полях постоянных магнитов. Магнитный двигатель содержит постоянные магниты и ротор из ферромагнитного вещества, выполненный в виде кольца или полого шара. Внутри него неподвижно закреплен первый постоянный магнит. Снаружи от него неподвижно закреплен второй постоянный магнит подковообразной формы. Магнитные поля первого и второго постоянных магнитов взаимно ортогональны в области расположения ротора и действуют на него с различными магнитными силами. Постоянная времени процесса перемагничивания ферромагнитного вещества ротора равна 0,09/ уст., где уст. — расчетная угловая скорость вращения ротора в установившемся режиме. Вращение ротора обусловлено различием сил, действующих на намагничивающийся ротор со стороны указанных постоянных магнитов, что отвечает различным по величине и противоположным по направлению вращающим моментам, приложенным к указанному ротору, разность которых определяет результирующий вращающий момент, раскручивающий ротор до угловой скорости, ограниченной величиной момента нагрузки (с учетом трения вращения) и магнитной вязкостью ферромагнитного вещества ротора с заданной постоянной времени процесса его перемагничивания. Указанное различие действующих на ротор сил связано с различием магнитных сопротивлений соответствующих магнитных цепей и различием углов действия этих сил к радиусу кольца ротора. 3 ил.

Рисунки к патенту РФ 2310265

Изобретение относится к области физики магнетизма и может быть использовано в качестве источника механической энергии, получаемой от преобразования энергии магнитного поля, создаваемого постоянными магнитами.

Магнетизм — особая форма взаимодействия электрических токов и магнитов (тел с магнитным моментом) между собой и одних магнитов с другими магнитами. Магнитное взаимодействие пространственно разнесенных тел осуществляется через магнитное поле Н, которое, как и электрическое поле Е, представляет собой проявление электромагнитной формы движения материи. Между магнитными и электрическими полями нет полной симметрии, так как источниками электрических полей являются электрические заряды, а магнитные заряды — монополи пока не обнаружены, хотя теория предсказывает их существование. Источник магнитного поля — движущийся электрический заряд, то есть электрический ток. В атомных масштабах движение электронов и протонов создает орбитальные микротоки, связанные с переносным движением этих частиц в атомах или атомных ядрах, кроме того, наличие у микрочастиц спина обусловливает существование у них спинового магнитного момента. Поскольку электроны, протоны и нейтроны, образующие атомные ядра, атомы, молекулы и все макротела (газы, жидкости, кристаллические и аморфные твердые тела) имеют собственный магнитный момент, то, в принципе, все вещества подвержены влиянию магнитного поля — обладают магнитными свойствами, то есть являются магнетиками. Магнетики подразделяются на диамагнетики, парамагнетики и ферромагнетики. Последние имеют наибольшую магнитную восприимчивость и используются в технике в качестве эффективных магнитов. В них атомные магнитные моменты спонтанно коллинеарно самоориентируются, образуя аномально большие магнитные моменты. У современных магнитных материалов энергетическое произведение (В Н)max достигает величины 320 Тл·кА/м (40 млн Гс·Э), например, у материала с высокой коэрцитивной силой SmCo3 (см., напр., Преображенский А.А., Биширд Е.Г. Магнитные материалы и элементы, 3 изд., М., 1986; Февралева И.Е. Магнитотвердые материалы и постоянные магниты. К., 1969; Постоянные магниты. Справочник, М., 1971).

Сложность атомной структуры веществ, построенных из огромного числа микрочастиц, дает практически неисчерпаемое разнообразие их магнитных свойств, связь которых с немагнитными свойствами (электрическими, механическими, оптическими и др.) позволяет использовать исследования магнитных свойств для получения информации о внутренней структуре и других свойствах микрочастиц и макротел. Отметим, что магниты обладают внутренней энергией. В случае однородного магнитного поля в объеме магнита V энергия запасенного магнитного поля W˜ Н 2 V/2. Причем эта величина энергии практически не расходуется при силовых взаимодействиях с другими магнетиками и сохраняется благодаря постоянному движению заряженных микрочастиц вещества.

Известно силовое взаимодействие магнитных полей, создаваемых двумя магнитными системами, например, в электрических двигателях, состоящих из подвижного вращающегося ротора и неподвижного статора. В синхронных многофазных двигателях переменного тока в статоре образуется вращающееся магнитное поле, увлекающее за собой намагниченный постоянно ротор: его полюс S постоянно притягивается к полюсу N статора, а противоположный полюс N ротора притягивается полюсом S статора. В коллекторных двигателях постоянного тока, наоборот, вращающиеся за счет работы коллектора магнитные полюса ротора приводят во вращение ротор относительно статора так, что всегда противоположные полюсы статора и ротора тяготеют друг к другу.

Известно, что одноименные полюсы двух магнитных систем отталкивают друг друга, что в технике используется, например, для получения так называемой магнитной подушки, с целью снижения трения при вращении, например в гироскопии.

Ближайшим аналогом (прототипом) заявляемому техническому решению является способ силового взаимодействия магнитного поля магнита с магнитным полем, образованным электрическим током в соленоиде, рамке с током, в роторе, статоре двигателя, в электромагните и др. физических и технических объектах на основе закона электромагнитной индукции Фарадея и закона Био-Савара (см., напр., Краткий справочник по физике, Г.Эберт, пер. со 2-го нем.изд. под ред. К.П.Яковлева, ГИФМЛ, М., 1963, с.434-436).

Недостатком известного технического решения при получении механической энергии при взаимодействии магнитных полей является затрата энергии от ее источника с коэффициентом полезного действия, всегда меньшим единицы, поскольку при прохождении в проводнике электромагнитной системы электрического тока имеют место потери на нагревание проводника, и эти тепловые потери невосполнимы.

Известно, что закон Ома применим к магнитным цепям, однако при этом магнитный ток в магнитной цепи с соответствующим магнитным сопротивлением не создает тепловых потерь, то есть магнитная энергия постоянного магнита не расходуется и не превращается в тепло. В этом смысле постоянный магнит, если абстрагироваться от так называемого старения магнита, является «вечным» источником магнитного поля с заданной величиной энергии. Это обстоятельство создает предпосылки к использованию энергии практически неисчерпаемого магнитного поля для получения механической работы.

Заявляемое техническое решение — магнитный двигатель, содержащий постоянные магниты и вращающийся ротор из ферромагнитного вещества, отличающийся тем, что вращающийся ротор из ферромагнитного вещества выполнен, например, в виде кольца или полого шара, внутри которого неподвижно закреплен первый постоянный магнит прямой формы, а снаружи от него неподвижно закреплен второй постоянный магнит подковообразной формы, магнитные поля первого и второго постоянных магнитов взаимно скрещены, а постоянная релаксации магнитной вязкости Т ферромагнитного вещества ротора выбрана, например, равной 0,09/ уст. где уст. — угловая скорость вращения ротора в установившемся режиме.

Поставленная цель — получение механического вращения ротора из ферромагнитного вещества в скрещенных магнитных полях внутреннего и внешнего постоянных магнитов — достигается благодаря различию сил, действующих на намагничивающийся ротор со стороны указанных постоянных магнитов, что отвечает различным по величине и противоположным по направлению вращающим моментам, приложенным к указанному ротору, разность которых определяет результирующий вращающий момент, раскручивающий ротор до угловой скорости, ограниченной величиной момента нагрузки (с учетом трения вращения) и магнитной вязкостью ферромагнитного вещества ротора с заданной постоянной времени процесса его перемагничивания.

Устройство одного из вариантов построения магнитного двигателя с вращающимся ротором из ферромагнитного вещества в форме кольца представлено на фиг.1. Оно состоит их внутреннего первого постоянного магнита 1, вращающегося на оси 2 кольцевого ротора 3 из ферромагнитного вещества и внешнего второго постоянного магнита 4, причем магниты 1 и 4 закреплены неподвижно, а их магнитные поля взаимно ортогональны в области расположения ротора 3. Магнитные зазоры между магнитами 1 и 4 и ротором 3 выбраны минимальными, а магнитная индукция магнитов 1 и 4 определяет энергетику устройства.

Другие публикации:  Заявление о не работе телефона

На фиг.2 указаны магнитные полярности намагниченного первым магнитом 1 ферромагнитного вещества ротора 3 и возникающий при этом вращающий момент M1, направленный по часовой стрелке.

На фиг.3 указаны магнитные полярности намагниченного вторым магнитом 4 ферромагнитного вещества ротора 3 и возникающий при этом вращающий момент М2, направленный против часовой стрелки. На фиг.2 и 3 представлены также эпюры напряженностей магнитного поля, наведенного в соответствующих участках наружной А (для фиг.2) и внутренней В (для фиг.3) поверхностей кольцевого ротора 3, указаны геометрические параметры устройства ротора 3 — радиусы кольца R1 и R 2, причем R=(R1+R 2)/2 — средний радиус кольцевого ротора, а также показаны магнитные силовые линии соответствующих магнитных цепей раздельно по действию магнитов 1 и 4 на ротор 3.

Рассмотрим действие заявляемого устройства.

При неравенстве абсолютных величин моментов M1 и М2 результирующий вращающий момент, приложенный к ротору 3, равен M=M12 0. Различие указанных моментов достигается самой конфигурацией магнитных цепей магнитов 1 и 4 и ротора 3. Пусть, например, M 12. В этом случае ротор 3 будет вращаться на оси 2 по часовой стрелке. Поскольку при вращении ротора 3 из ферромагнитного вещества максимумы его намагниченности постоянно смещаются вдоль образующей кольца для системы координат, связанной с ротором, оставаясь неподвижными в системе координат неподвижно закрепленных первого 1 и второго 4 постоянных магнитов, результирующий вращающий момент M действует постоянно во времени, раскручивая ротор 3 при условии, что этот вращающий момент больше момента нагрузки М нагр на ось 2 с учетом ее момента трения ( М>Мнагр).

Поскольку намагниченность ферромагнитного вещества при включении магнитного поля устанавливается во времени по закону I(t)= Im[1-ехр(-t/ )], где Im — установившееся (наибольшее возможное) значение разности намагничивании ферромагнетика от магнитов 1 и 4 для заданных значений их магнитных полей, — постоянная релаксации магнитной вязкости для выбранного ферромагнитного вещества ротора 3, то с увеличением угловой скорости вращения ротора 3 снижается величина результирующего магнитного момента М( ), так как М( I(t) при t= , где = s/ R, s — продольный размер вдоль кольца ротора, внутри которого намагниченность максимальна с уровнем, например, 0,9 Im, R — радиус кольца ротора 3. Таким образом, получаем М( )=0,9 Im= Im[1-ехр(- s/ R)], где — размерный коэффициент пропорциональности, устанавливаемый опытным путем и зависящий от конструкции устройства (в частности, от величины магнитных зазоров между постоянными магнитами 1 и 4 относительно кольцевого ротора 3, а также от конструкции полюсов этих магнитов).

Момент трения оси 2 ротора 3 М тр( ), напротив, растет линейно с увеличением угловой скорости вращения ротора, то есть Мтр( )= , где — размерный коэффициент. Полагая присоединенный момент нагрузки Мпр.н. неизменным, не зависящим от скорости вращения ротора 3, находим уравнение для нахождения угловой скорости вращения ротора 3 в виде М( )=Мпр.н.тр ( ), откуда его явное выражение имеет вид: Im [1-ехр(- s/ R)]=Мпр.н.+ , и при заданных величинах конструктивных параметров устройства и величине присоединенного момента нагрузки легко найти угловую скорость вращения ротора 3. При этом в установившемся режиме с угловой скоростью уст присоединенный момент нагрузки Мпр.н.= Im[1-ехр(- s// уст R)]- уст определяет получаемую от магнитного двигателя механическую работу. Полагая величину ехр (- s/ уст R)=0,1 при k= s/R (можно принять, что k=0,2), выбор ферромагнитного вещества для ротора 3 должен удовлетворять условию достижения заданной величины намагниченности ферромагнетика, например, до уровня 0,9 Im в течение промежутка времени t= s/ уст R=2,2 , так что находим выражение для постоянной релаксации магнитной вязкости ферромагнитного вещества ротора 3 в виде =k/2,2 уст 0,09/ уст. Отметим, что ассортимент ферромагнетиков позволяет выбирать требуемые значения , так как эта величина находится для разных ферромагнетиков в чрезвычайно широком диапазоне — от 10 -9 с до нескольких десятков часов.

Намагничивание ферромагнитного вещества ротора 3 со стороны постоянного магнита 1 равно I m1 (соответствует фиг.2), а намагничение со стороны магнита 4 равно Im2 (соответствует фиг.3), так что Im=Im1 -I m2. При этом вращающий момент Mi определяется силой F1, приложенной ортогонально радиусу R ротора 3 и возникающей от силового взаимодействия намагниченности Im1 ферромагнетика ротора 3 с магнитным полем второго постоянного магнита 4, а вращающий момент М 2 — силой F2, приложенной ортогонально радиусу R ротора 3 и возникающей от силового взаимодействия намагниченности Im2 ферромагнетика ротора 3 с магнитным полем первого постоянного магнита 1. Причем указанные силы ортогональны друг другу в силу ортогональности исходных магнитных силовых линий для магнитов 1 и 4, а также не равны друг другу по абсолютной величине, а именно F1>F 2 при заданных конструктивных параметрах устройства, что и создает неуравновешенный вращающий момент M=M12 0.

Как известно, сила, действующая между полюсами с магнитными потоками Ф1 и Ф 2 на сравнительно большом расстоянии d, равна F=Ф 1Ф2/4 d 2 , где — абсолютная магнитная проницаемость ( =8,85.10 -12 Ф/м). Намагниченность ферромагнитного кольца ротора 3, образованная соответствующими магнитами 1 и 4, может быть эквивалентно представлена как действие образованных магнитов на соответствующих участках кольца — соответственно на наружной части кольца вблизи магнита 1 (зона А на фиг.2) и на внутренней части кольца вблизи магнита 4 (зона В на фиг.3, в низшей точке кольца). При этом можно полагать, в первом приближении, что произведение магнитных потоков Ф 1 Ф2, образованных между указанными полюсами наведенных в кольце магнитов и магнитами 4 и 1 соответственно, в обоих случаях взаимодействия оказывается одинаковым. Однако расстояние между областью максимальной намагниченности кольца, вызванной действием первого (внутреннего) постоянного магнита 1, несколько больше радиуса кольца d1>R, a расстояние между областью максимальной намагниченности кольца, вызванной действием второго (внешнего) постоянного магнита 4, несколько меньше величины (2) 1/2 R, то есть d2 2 2. Кроме того, сила F1 ортогональна радиусу кольца R, а сила F2 — суть проекция на касательную к радиусу кольца от силы, действующей под углом, близким к /4, то есть составляет от последней часть около 0,707 ее значения. Для идеализированного случая тонкого ферромагнитного кольца с минимальными зазорами между магнитами 1 и 4 и кольцом ротора 3 получаются соотношения сил F2/F 1=0,707/2=0,353, что означает в этом случае превышение вращающего момента M1 над вращающим моментов М2 почти втрое, тогда М=0,646 M1=0,646 F 1R=0,162 Ф1Ф2 / R, где Ф1 — магнитный поток с наружного участка кольца максимальной намагниченности, расположенного вблизи первого постоянного магнита 1, а Ф 2 — аналогичный магнитный поток, образованный вторым постоянным магнитом 4. Корректное решение задачи по определению сил F 1 и F2 обеспечивается интегрированием с учетом конфигурации магнитных силовых линий и топологии магнитных полюсов 1 и 4 и распределения напряженности магнитного поля в ферромагнитном кольце ротора 3, поэтому вышеприведенная оценка является лишь приблизительной, качественной, не претендующей на строгость.

По правилам механики мощность на оси 2 рассмотренного магнитного двигателя, которую можно сообщить механической нагрузке, равна Nн (0,9 М- уст) уст при выборе ферромагнетика ротора 3 с величиной постоянной 0,09/ уст. Видно, что для приведения ротора 3 во вращательное состояние необходимо, чтобы коэффициент мог быть задан как 2 /2m1=(3/2)kT, где k — постоянная Больцмана, Т — температура по шкале Кельвина, а соударения микрочастиц между собой вызывают тепловые процессы — среда нагревается, то есть происходит самовоспроизводящийся обмен энергией, при котором беспредметно говорить о тепловых потерях, поскольку тепловая энергия и является источником движения микрочастиц, а это движение порождает саму тепловую энергию. На поддержание хаотического движения микрочастиц и, следовательно, хаотического распределения магнитных моментов (спинов) в веществе, при котором оно не обнаруживает ощутимых магнитных свойств, затрачивается, по-видимому, больше энергии, чем для тех микрочастиц, которые имеют упорядоченное расположение их магнитных моментов. Поэтому высвободившаяся в результате упорядочения микрочастиц (доменов) часть энергии как раз и составляет энергию магнитного поля. Эта энергия самовосполняемая, определяемая природой процессов превращения энергии на микроуровне.

Однако остается неясным вопрос, каким образом механическая работа, совершаемая действием постоянного магнитного поля на магнитные тела или другие магниты, осуществляется без потери энергии магнитного поля. Ведь факт, что работа магнитных сил не приводит к исчезновению намагниченности постоянных магнитов. Работа совершается действием сил, в частности, магнитных сил. По третьему закону Ньютона действие силы вызывает равное и противоположно направленное силовое противодействие. В случае с силовым действием постоянных магнитов возникает вопрос об их источнике энергии, вопрос о том, какой объект затрачивает энергию, а какой ее получает. Но, возможно, нет ни того, ни другого, оба объекта — магнит и притягиваемое или отталкиваемое им тело — оказывают друг на друга силовое воздействие. А поскольку магнит при этом не теряет своей энергии, то из этого следует вывод, что магнит как бы восполняет «потраченную» на перемещение тела своей силой энергию за счет обратного силового действия со стороны этого тела, хотя природа этого преобразования пока не понятна.

Таким образом, постоянные магниты потенциально являются источниками энергии, своеобразными неистощимыми аккумуляторами, «подзаряд» которых осуществляется непрерывно во времени за счет происходящих процессов превращения энергии на молекулярном уровне. «Запуск» в работу таких «аккумуляторов» как толчок к началу осуществления указанных молекулярных процессов производится от внешних источников однократно на этапе создания постоянных магнитов путем доведения специальных ферромагнитных материалов с высокой коэрцитивной силой до их насыщения в магнитном поле соленоидов с током намагничивания и необходимой технологической тренировки магнитов по известным правилам.

Возможной модификацией заявляемого устройства является использование постоянных магнитов 1 и 4 не с плоскими полюсами, а сферическими — для ротора в форме полого шара или сферически-цилиндрическими — для ротора кольцевого типа, что снижает магнитное сопротивление цепей с такими магнитами.

Излишне говорить, что применение магнитных двигателей рассмотренного типа и аналогичных конструкций, использующих постоянные магниты, вместо электромагнитных двигателей, требующих затраты электрической энергии от постороннего ее источника, представляет большой интерес для энергетики. Физические основы работы таких двигателей представляют самостоятельный интерес для физиков-теоретиков, занимающихся проблемами магнетизма. Они должны со временем открыть этот феномен восполнимости энергии магнитного поля постоянных магнитов, независимо от их силового действия, без учета фактора естественного старения в таких магнитах.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Магнитный двигатель, содержащий постоянные магниты и ротор из ферромагнитного вещества, отличающийся тем, что ротор из ферромагнитного вещества выполнен в виде кольца или полого шара, внутри которого неподвижно закреплен первый постоянный магнит, а снаружи от него неподвижно закреплен второй постоянный магнит подковообразной формы, причем магнитные поля первого и второго постоянных магнитов взаимно ортогональны в области расположения ротора и действуют на него с различными магнитными силами, постоянная времени процесса перемагничивания ферромагнитного вещества ротора равна 0,09/ уст., где уст. — расчетная угловая скорость вращения ротора в установившемся режиме.

Еще статьи:

  • Федеральный закон 40-фз с изменениями осаго Федеральный закон "Об обязательном страховании гражданской ответственности владельцев транспортных средств" от 25.04.2002 N 40-ФЗ (последняя редакция) РОССИЙСКАЯ ФЕДЕРАЦИЯ ФЕДЕРАЛЬНЫЙ ЗАКОН ОБ ОБЯЗАТЕЛЬНОМ СТРАХОВАНИИ […]
  • Приказ мвд+условные установки Новый приказ МВД по условным установкам ТСО Приказом МВД РФ от 16.07.2012 г. № 689 утверждена Инструкция по организации деятельности подразделений вневедомственной охраны территориальных органов Министерства […]
  • Федеральный закон 122 от 22082019 Федеральный закон от 22 августа 2004 г. N 122-ФЗ "О внесении изменений в законодательные акты Российской Федерации и признании утратившими силу некоторых законодательных актов Российской Федерации в связи с принятием […]
  • Ленинский суд тюмени 8 мировой Ленинский суд тюмени 8 мировой ЛЕПЕШКИН Александр Вячеславович Помощник мирового судьи ВОСКРЕСЕНСКАЯ Лейла Валерьевна Телефон: 8 (3452) 28-63-87 Секретарь судебного заседания БУХАРИНА Татьяна Александровна Телефон: 8 […]
  • Образец заявления на регистрацию автомобиля ярославль Бланки документов Бланки заявлений Подсказка: для корректного сохранения документа у вас на компьютере и последующего вывода на принтер следует кликнуть по ссылке правой кнопкой мышки, затем в открывшемся меню выбрать […]
  • Статья 207 ук рсфср Статья 207. Угроза убийством, нанесением тяжких телесных повреждений или уничтожением имущества Статья 207. Угроза убийством, нанесением тяжких телесных повреждений или уничтожением имущества Угроза убийством, […]
Патент магнитного двигателя